در حدود سال 1950 میلادی ، فیزیکدان معروف آمریکایی ، پروفسور ریچارد فاینمن پیشنهاد ساخت یک موتور الکتریکی با ابعاد کمتر از 1.64 اینج را داد و برای اولین بار جایزه 1000 دلاری برای کسی که موفق به ساخت آن شود تعیین نمود. سرانجام ویلیام مک لیلان با زحمت فراوان توانست بوسیله یک انبرک دستی و یک میکروسکوپ این کار را به انجام برساند. در واقع هدف فاینمن از این کار ایجاد انگیزه در موسسات آموزشی و تحقیقاتی بود تا توجه آنها رابه دنیای میکروها و نانوها جلب کند.
فاینمن برای اولین بار و بطور جدی این بحث را در سال 1960 و در تکنولوژی کالیفرنیا (Caltech) طی یک سخنرانی با عنوان (There is plenty of 200m at the Bottom) مطرح کرد. در طی این سخنرانی فاینمن طریقه نگارش 24 جلد دایره المعارف Britanica را به صورت تئوری بر نوک یک سوزن توضیح داد و بدین ترتیب شاخه جدیدی از دانش پا به عرصه ظهور گذاشت.
چقدر کوچک؟
تا به اینجا متوجه شدیم که علم فناوری نانو که مورد بحث ما میباشد، در مورد بسیار کوچکها صحبت میکند. اما میخواهیم بدانیم چقدر کوچک؟ یک نانو عبارتست از 9-10 متر ، اگر بخواهیم این اندازه را در ذهن خود مجسم کنیم باید بدانیم که اگر تعداد یک میلیون ذره یک نانومتری را در کنار هم قرار دهیم تنها طولی برابر با یک میلیمتر بدست میآید. به صورت کاملا دقیق هنگامی که ما از ابعاد نانومتری صحبت میکنیم. منظور ما ابعادی در اندازه اتمها و مولکولها میباشد.
آیا نانو تکنولوژی یک علم هست؟
قبل از اینکه به توانمندیهای علم نانو تکنولوژی بپردازیم بهتر است که تعریف جامع و دقیقی از این علم ارائه دهیم تا چهارچوپ بحثمان مشخص گردد.
نانو تکنولوژی عبارتست از توانمندی تولید مواد ، ابزارها و سیستمهای جدید در اندازههای مولکولی و اتمی و در دست گرفتن کنترل این ساختهها و استفاده از ویژگیهایی که در این ابعاد ظاهر میشود.
با استفاده از همین تعریف ساده مشخص میشود که نانو تکنولوژی کاربردهای متعددی را در زمینههای مواد غذایی ، دارو ، تشخیص پزشکی ، بیوتکنولوژی تا الکترونیک و کامپیوتر در ارتباطات ، حمل و نقل ، انرژی ، محیط زیست ، مواد ، هوافضا و امنیت ملی میتوان برشمرد. خواننده به وضوح مشاهده میکند که بشر با یک انقلاب دیگری در تکنولوژی روبرو است. انقلابی که بسیار وسیعتر و گستردهتر از دو انقلاب دیگر (کشاورزی و صنعتی) است. البته گفتنی است که نانو تکنولوژی در کنار دو تحول عظیم دیگری یعنی ژنتیک و فناوری اطلاعات گام بسوی این انقلاب بر میدارد.
فناوری نانو و پزشکی
همانگونه که میدانید روش معمولی درمان دارویی ، بدین صورت است که ماده موثر را وارد بدن میکنند و این ماده علاوه بر سلولهای مریض به سلولها و بافتهای سالم بدن نیز سرایت میکند. این امر ، باعث مصرف بسیار بالای دارو شده و مهمتر اینکه موجب آسیب رساندن به بافتهای سالم بدن نیز میگردد. محققان با استفاده از فناوری نانو ، در حال ساخت کپسولهایی با ابعاد نانومتری هستند که علاوه بر اندازه غیر قابل تصورشان قدرت تشخیص بافتهای مریض را داشته ، دقیقا روی این بافتها قرار گرفته و مقدار داروی لازم را به آنها میرسانند.
این پدیده را دارو رسانی (drug delivery) گویند. فناوری نانو همچنین راه را برای ساخت اندامکهای سازگار با بدن بسیار هموارتر ساخته و بسیاری از امراض غیر قابل علاج را درمان پذیر خواهد کرد. در مورد درمان سرطان نیز محققان در حال ساخت نانو ذراتی هستند که به محض ورود به بدن ، بافتهای سرطانی را حتی اگر به اندازه چند سلول باشند، شناسایی کرده و از بین میبرند. این امر موجب خواهد شد که بافتهای سرطانی در همان روزهای ابتدای شکل گیری ، شناسایی شده و از بین بروند. بطور کلی در سالهای آینده پیشگیری ، تشخیص و درمان بیماریها نسبت به آنچه امروزه به عنوان پزشکی خوانده میشود، بسیار متفاوت خواهد شد.
فناوری نانو و حمل و نقل
مواد جدیدی که از نانو ذرات ساخته شدهاند، به میزان چشم گیری موجب کاهش وزن وسایل نقلیه خواهند شد. در خودروهای نسل آینده ، بجای فولاد ، از مواد مرکب یا نانو کامپوزیتهایی استفاده میشود که وزنی بسیار ناچیز و استحکام حیرت انگیز دارند (نسبت استحکام به وزن در این مواد در مقایسه با فولاد چند صد برابر بیشتر است).
کاهش وزن در وسایل نقلیه یعنی دستیابی به سرعتهای بالاتر ، کاهش مصرف سوخت ، کاهش تولید آلایندهها و هزاران منفعت دیگر که به یمن کاهش آلودگی ، عاید بشر خواهد شد. هماکنون با استفاده از این فناوری ، لاستیکهایی ساخته میشود که با دارا بودن درصدی از خاک رس ، مقاومت به سایش بسیار بالایی داشته و عمری چند برابر لاستیکهای معمولی دارند.
دید کلی
فناوری نانو ، چنانکه از نام آن برمیآید با اجسامی به ابعاد نانومتر سروکار دارد. فناوری نانو در سه سطح قابل بررسی است: مواد ، ابزارها و سیستمها. در حال حاضر در سطح مواد ، پیشرفتهای بیشتری نسبت به دو سطح دیگر حاصل شده است. موادی را که در فناوری نانو بکار میروند، نانو ذره نیز مینامند. برای آنکه تصوری از ریزی نانو ذرهها داشته باشیم بهتر است آن را با ابعاد سلول مقایسه کنیم. اندازه متوسط سلول یوکاریوتی 10 میکرومتر است. اندازه متوسط یک پروتئین 5 نانومتر است که با ابعاد ریزترین جسم ساخت بشر قابل مقایسه است. بنابراین میتوان با بکارگیری نانو ذرهها نوعی مامور مخفی به درون سلول فرستاد و به کمک آن از بعضی رازهای نهفته در سلول پرده برداری کرد.
این ذرات آنقدر ریزند که تداخل عمدهای در کار سلول بوجود نمیآورند. پیشرفت در زمینه نانو فناوری نیازمند درک وقایع زیستی در سطح نانوهاست. از میان خواص فیزیکی وابسته به اندازه ذرات نانو ، خواص نوری (Optical) و مغناطیسی این ذرات ، بیشترین کاربردهای زیستی را دارند. استفاده از فناوری نانو در علوم زیستی به تولد گرایش جدیدی از این فناوری منجر شده است یعنی نانوبیوتکنولوژی. کاربردهای نانو ذرهها در زیست شناسی و پزشکی عبارتند از: نشانگرهای زیستی فلورسنت ، ترابری دارو و ژن ، تشخیص زیستی پاتوژنها ، تشخیص پروتئینها ، جستجو در ساختار DNA ، مهندسی بافت ، تخریب تومور از طریق گرمادهی به آن و بهبود تباین (کنتراست).
رابطه نانوتکنولوژی و بیوتکنولوژی
نانوتکنولوژی مجموعهای است از فناوریهایی که به صورت انفرادی یا باهم در جهت بکارگیری و یا درک بهتر علوم مورد استفاده قرار میگیرند. بیوتکنولوژی جزء فناورهای در حال توسعه میباشد که با بکارگیری مفهوم نانو به پیشرفتهای بیشتری دست خواهد یافت. نانوبیوتکنولوژی به عنوان یکی از حوزههای کلیدی قرن 21 شناخته شده است که امکان تعامل با سیستمهای زنده را در مقیاس مولکولی فراهم میآورد. بیوتکنولوژی به نانوتکنولوژی مدل ارائه میدهد، در حالی که نانوتکنولوژی با در اختیار گذاشتن ابزار برای بیوتکنولوژی آن را برای رسیدن به اهدافش یاری میرساند.
نشانگرهای زیستی
از آنجا که انداه نانو ذرات ، در محدوده اندازه پروتئینهاست، میتوان از آنها برای نشاندار کردن نمونههای زیستی استفاده کرد. برای این کار ، باید نانو ذره بتواند به نمونه زیستی هدف متصل شود و نیز راهی برای دنبال کردن و شناسایی نانو ذره وجود داشته باشد. به منظور ایجاد میان کنش بین نانو و نمونه زیستی ، نانو ذره را با پوشش بیولوژیکی مانند آنتی بادیها ، بیوپلیمرهایی مانند کلاژنها که نانو ذره ها را از نظر زیستی سازگار میکند، میپوشانند. میتوان نانو ذرهها را فلورسنت کرده یا خواص نوری آنها تغییر داد.
نانو ذرهها در مرکز نشانگر زیستی قرار میگیرند و بقیه اجزا روی آنها قرار داده میشوند و این ساختار غالبا کروی است. کنترل دقیق بر اندازه متوسط ذرات امکان ایجاد کاوشگرهای فلورسنت را که باریکههای نوری را در طیف وسیعی از طول موج گسیل میدارند، فراهم میآورند. این امکان به تهیه نشانگرهای زیستی با رنگهای فراوان و قابل تشخیص ، کمک شایانی میکند. ذره مرکزی معمولا توسط چندین تک لایه از موادی که تمایل به واکنش ندارند مثل سیلیکا محافظت میشود.
مهندسی بافت Tissue engeering
سطح استخوان از ترکیباتی تشکیل شده است که حدودا 100 نانومتر عرض دارند. اگر سطح یک عضو مصنوعی به استخوان طبیعی پیوند بخورد بدن آن را پس میزند. دلیل امر تولید بافت مصنوعی در محل استخوان طبیعی و سطح مصنوعی میباشد. استئوبلاستها در بافت پیوندی استخوان وجود دارند و بخصوص در استخوانهای در حال رشد دارای فعالیت چشمگیری هستند. با ایجاد ذراتی در اندازه نانو در سطح مفاصل و استخوانهای مصنوعی احتمال دفع عضو جایگزین به دلیل تحریک سلولهای استئوبلاست کمتر میشود. ایجاد این ذرات با ترکیب مواد پلیمری ، سرامیکی و فلزی چندی پیش توسط دانشمندان به اثبات رسید.
مواد مورد استفاده در ترمیم استخوان
تیتانیوم ماده شناخته شدهای برای ترمیم استخوان است و به دلیل ترکیبات خاص و وزن زیادش جهت بالا بردن میزان استحکام بطور وسیع در دندانپزشکی و ارتوپدی استفاده میشود. ولی متاسفانه به دلیل آنکه بخش چسبندهای که با Apatite (بخش فعال استخوان) پوشیده شده با تیتانیوم سازگار نیست فاقد فعالیت زیستی میباشد. استخوان واقعی نانوکامپوزیتی از موادی است که از ترکیب بلورهای هیدروکسید Apatite در ماتریکس آلی بوجود آمده و به حالت منفرد یافت میشود. استخوان طبیعی از نظر مکانیکی ، ضخیم و در عین حال دارای الاستیسیته میباشد و در نتیجه قابل ترمیم است.
ساخت یک دندان
مکانیسم نانویی دقیقی که منجر به تولید ترکیباتی با خواص مفید شود، همچنان مورد مطالعه و بررسی قرار دارد. اخیرا با استفاده از روش tribology یک دندان مصنوعی به صورت viscoelastic ساخته شده و دارای روکش نانویی میباشد. از خواص منحصر به فرد این دندان مصنوعی میتوان به عایق بودن آن در مقابل خراش و افزایش التیام دندان اشاره کرد.
معالجه سرطان به روش فتودینامیک
معالجه سرطان با استفاده از روش فتودینامیک بر اساس نابودی سلولهای سرطانی بوسیله لیزری است که تولید اکسیژن اتمی میکند. به این طریق که اکسیژن اتمی رنگ خاصی را تولید میکند و سلولهای سرطانی بیش از سلولهاهای دیگر آن را جذب میکنند. در نتیجه فقط سلولهای سرطانی توسط اشعه لیزر نابود میشوند. البته یکی از معایب این روش آن است که به دلیل آب گریز بودن مواد رنگی ، این مواد به سمت پوست و چشمها حرکت میکند و در صورتی که شخص در معرض نور خورشید قرار گیرد باعث حساسیت در پوست و چشمها میشود.
برای این حل مشکل صورتهای آب گریز مولکول رنگها را داخل ذرات نانویی متخلخل مثل ormosil nano partical که دارای منافذی در حدود یک نانومتر میباشند قرار میدهند که این دارای دو مزیت است اولا از انتقال مواد رنگی به سایر نقاط بدن جلوگیری میکنند و ثانیا امکان ورود و خروج آزادانه اکسیژن را مهیا میسازد.
کاربردهای اکسید تیتانیوم
اکسید تیتانیوم (TiO2) می تواند به عنوان کاتالیزور نوری عمل نماید. هنگام تابش نور جذب فوتونها با انرژی بالا ، باعث برانگیختگی الکترونها و ایجاد رسانایی در مولکول میگردد. شکاف ایجاد شده بین دو جفت الکترون به مشابه یک جریان الکتروپوزیتیو در طول مولکول DNA باعث باز شدن دو رشته DNA از یکدیگر میگردد. در واقع تغییرات ایجاد شده بوسیله فوتونهای نور در مولکول TiO2 باعث میشود که این مولکول به شکل یک آنزیم آندونوکلئاز عمل نماید. این تواناییها در آینده میتواند تغییرات زیادی را در استفاده از داروها و ژن درمانی ایجاد نماید و توانایی پیوند TiO2 با بیومولکولهای مختلف راه را در ژن درمانی هموار خواهد نمود.
یکی از بزرگترین اشکالات دستکاری داخل سلول بوسیله این ریز ابزار این است که این ذرات به اندازه کافی توانایی کنترل ماده ژنتیکی داخل هسته را ندارند. ترکیب مولکول DNA با TiO2 در محیط خارج سلول نشان دهنده این مشکل است. به ازای اتصال TiO2 به هر 60 - 50 جفت باز فقط یک ناحیه ژنی در سلول پستانداران تحت پوشش قرار میگیرد که دانشمندان امیدوارند این مشکل نیز در آینده نزدیک حل شود. همچنین تحقیقاتی در زمینه استفاده از این ذرات به عنوان جایگزینی در توقف سنتز RNA به عنوان بازدارندههای سنتز RNA با مکانیزم ایجاد شکاف در RNA صورت گرفته که میتواند در صورت تکمیل شدن، امکان استفاده از این ذرات را در توقف سنتز RNA در سلولهای سرطانی فراهم نماید.
چشم انداز بحث
با توجه به پیشرفت سریع و دامنه گسترده بیوتکنولوژی زمینههای بروز انقالاب بیوتکنولوژی عصر جدیدی در علوم مختلف مانند بیولوژی ، پزشکی ، فارماکولوژی و مهندسی ژنتیک فراهم گردیده است. به علاوه حوزههای دیگری مانند اقتصاد و سیاست نیز از آن تاثیر بسزایی پذیرفته است. هم اکنون از دیدگاه اخلاق زیستی در این رابطه سوالات مهم و اساسی مطرح شده است که علاوه بر اثرات بسزایی که بر پیشرفتهای علمی و سایر زمینههای علوم زیستی دارد، نسلهای آینده بشر را نیز به صورت گستردهای تحتالشعاع قرار میدهد. در این باره مشارکت مداوم دانشمندان کنجکاو و خردمندی میتواند راه گشا بوده و بایستی با در نظر گرفتن این منابع و پیشرفتهای جدید و با امید به حل چنین مشکلات و مسائلی با فائق آمدن بر همه محدودیتها در جهت گسترش این دانش فعالیت نمود.